3分でわかる!三平方の定理(ピタゴラスの定理)の公式とは?

三平方の定理(ピタゴラスの定理)の公式とは??

こんにちは!この記事を書いているKenだよ。電気最高。

 

中学3年生になると、

三平方の定理

を勉強していくよね??

この定理は今から2500年ぐらい前に活躍した「ピタゴラス」っていう数学者が発見した定理だから、

ピタゴラスの定理

とも呼ばれてるやつね。

発見者の名前がついてるわけ。

 

この三平方の定理(ピタゴラスの定理)とは何かっていうと、

直角三角形の3つの辺の関係を表した公式

なんだ。

 

もうちょっと具体的にいうと、直角三角形には、

斜辺の2乗は、直角をはさむ辺を2乗して足したものと等しい

っていう関係があるんだ。

 

たとえば、斜辺の長さがc、その他の辺の長さがa・bの直角三角形ABCがあっとすると、

 a² + b² = c²

っていう公式が成り立っているんだ。

 

三平方の定理(ピタゴラスの定理) 計算問題 解き方

 

たとえば、斜辺の長さが15cm、その他の辺の長さが12cm、9cmの直角三角形ABCをイメージしてみて。

三平方の定理(ピタゴラスの定理) 公式

斜辺ABの2乗は、

AB²=15² = 225

 

一方、その他の辺のBCとACの2乗して足してみると、

AC²+ BC²

= 12² + 9² = 144 + 81 =225

だね!

おっ。両方225になって等しくなってんじゃん!

ピタゴラスの定理の公式すごいな。。

>>三平方の定理(ピタゴラスの定理)の証明はこちら

 

三平方の定理(ピタゴラスの定理)の公式の何がすごいのか??

でもさ、

三平方の定理(ピタゴラスの定理)の公式のすごさがいまいちわからないよね??

ぜんぜん生活に役に立ったないじゃん!

って思ってない??

 

じつは、三平方の定理(ピタゴラスの定理)のすごいところは、

直角三角形の2辺の長さがわかれば、残りの辺の長さがわかる

ってところなんだ。

 

たとえば、斜辺の長さ13cm、その他一辺の長さが5cmの直角三角形DEFがあったとしよう。

 

三平方の定理(ピタゴラスの定理) 公式

 

DFの長さって問題にも書いてないし、誰も教えてくれてないよね??

 

でも、大丈夫。

三平方の定理(ピタゴラスの定理)を使えば求められるんだ。

DFの長さをxcmとして、三平方の定理(ピタゴラスの定理)に代入してみると、

13² = 5² + x²

x = 12

あら不思議!

長さがわからない直角三角形の辺を求めることができたね。

 

三平方の定理(ピタゴラスの定理) 公式

 

>>三平方の定理(ピタゴラスの定理)の計算問題にチャレンジ!!

 

まとめ:三平方の定理(ピタゴラスの定理)の公式は便利だから絶対暗記!

三平方の定理(ピタゴラスの定理)の公式はめちゃくちゃ便利。

この公式なら、

だって計算できちゃうんだ。

入試問題や定期テストでむちゃくちゃよく出てくる定理だから、しっかりと覚えておこうね。

そんじゃねー

Ken