×

tomoロゴ tomo

ひし形の対角線の求め方がわかる3ステップ

ひし形の対角線の求め方がわからない??

こんにちは!この記事をかいているKenだよ。スパゲッティゆでまくったね。

 

ひし形の対角線の問題ってたまにでるよね??

たとえばつぎのようなやつ↓↓

 

例題

1辺の長さが10のひし形ABCDがある。2本の対角線のうち、一方は他方より4 cm長いとすると、対角線は何cmになりますか?? ※対角線の交点をMとする

ひし形 対角線 求め方

 

この問題はぱっと見、むずかしい。

だけど、

うまーく問題をといてあげれば、

3ステップで答えをだせちゃうんだ。

 

今日は、

ひし形の対角線の求め方の3つのステップ

  1. 対角線をxとおく
  2. 対角線の半分をだす
  3. 三平方の定理をつかう

 

をわかりやすく解説してみたよ。

よかったら参考にしてみて。

 

 

ひし形の対角線の求め方がわかる3ステップ

さっそく解説していくよ。

例題をといていこう!

 

例題

1辺の長さが10のひし形ABCDがある。2本の対角線のうち、BDはACより4 cm長いとすると、対角線ACは何cmになりますか?? ※対角線の交点をMとする

ひし形 対角線 求め方

 

 

Step1. ある対角線の長さをxとする!

まず、対角線の長さを「x」とおこう。

 

例題では対角線ACをx cmとおいたよ。

 

ひし形 対角線 求め方

対角線BDはACよりも4cm長いはずだから、

x + 4

になるね。

ひし形 対角線 求め方

これが第1ステップ!!

 

 

Step2. 対角線の半分の長さを求める!

つぎは、

ひし形の対角線の「半分」を求めよう!

 

ひし形の定義で、

ひし形は平行四辺形である

ってならったよね??

ってことは、ひし形でも平行四辺形の性質の、

対角線は中点で交わる

ってやつが使えるんだ。

 

ひし形ABCDでいうと、対角線ACとBDは中点Mでまじわっているはず。

ひし形 対角線 求め方

ってことは、

MはACの中点だね。

計算してやると、

AM = 1/2 x

になる。

ひし形 対角線 求め方

おなじように、

MがBDの中点でもあるから、

BM = (x+4)/2

になるね。

ひし形 対角線 求め方

これが第2ステップ!!

 

 

Step3. 三平方の定理をつかう!

最後は、三平方の定理で方程式をつくろう。

対角線をひいてできた、

「小さな三角形」に注目するんだ。

 

ひし形ABCDでいうと、

三角形ABMだね。

ひし形 対角線 求め方

ひし形の対角線の性質に、

垂直に交わる

があったね。

つまり、三角形ABMは角AMB= 90°の直角三角形なんだ。

ひし形 対角線 求め方

 

こいつで三平方の定理をつかってやると、

10^2 = (1/2x)^2 + {(x+4)/2}^2

っていうxについての方程式ができるはずだ!

ひし形 対角線 求め方

こいつを分数をふくむ方程式の解き方でといてやると、

x = 12

になるね。

 

つまり、

対角線ACは12[cm]ってことになる。

ひし形 対角線 求め方

おめでとう!

ひし形の対角線の長さを求められたね!

 

 

まとめ:ひし形の対角線の求め方は三平方の定理でとどめ!

ひし形の対角線の求め方はちょっと複雑。

でも基本をおさえてしまえば、

っていう3つで対角線をもとめられるね。

どんどん問題になれていこう!

そんじゃねー

Ken

【簡単公式】長方形の面積の求め方がわかる3ステップ

長方形の面積の求め方の公式って??

こんにちは!この記事をかいているKenだよ。家系ラーメン、最高。

 

長方形の面積の求め方には公式があるよ。

ヨコの長さをa、タテの長さをbとすると面積は、

ab

で求められるんだ。

 

長方形 面積 求め方 公式

 

つまり、

(長方形の面積)=(タテの長さ)×(ヨコの長さ)

ってわけだね。

この公式ってむちゃくちゃ便利。

 

たとえば、ヨコ4cm、タテ3cmの長方形ABCDがあったとしよう。

 

長方形 面積 求め方 公式

 

この長方形の面積は、

4 × 3
= 12 [cm^2]

になるんだ。

公式でガンガン計算していこう!

 

 

なぜ長方形の面積の公式つかえるの??

でもさ。

なぜ長方形の面積が公式で求められるんだろう?? 

話がうますぎるね。

そこで今日は、

長方形の面積の求め方を3ステップで解説していくよ。

よかったら参考にしてみて。

 

 

Step1. 「1cm×1cm」のミニ正方形をイメージ

「1cm×1cm」の正方形をイメージしよう。

 

長方形 面積 求め方 公式

 

この「ミニ正方形」が、

長方形に何個はいっているか??

を求めていくよ。

 

これはレンガの家の大きさを求めるときといっしょ。

 

長方形 面積 求め方 公式

 

この家の大きさを求めるときはどう計算する??

そう、

そうだよ。

1つのレンガ素材の大きさを求めて、

 

長方形 面積 求め方 公式

 

長方形にレンガが何個はいっているのか??

ということを考えていくはずなんだ。

同じことを長方形の面積でもやろうってわけさ!

 

 

Step2. ヨコに「ミニ正方形」を並べる!

「ミニ正方形」を長方形のヨコの分ならべてみよう。

 

たとえば、ヨコの長さが4cmの長方形だったら、

4つのミニ正方形がヨコに並ぶはず。

 

長方形 面積 求め方 公式

 

これで第2ステップ終了さ。

 

 

Step3. タテの長さ分ふやす

最後に、ヨコに増やした正方形たちをタテの分だけふやそう。

 

長方形のタテが3cmだとしたら、

4つのミニ正方形を3つずつタテに増やすんだ。

 

長方形 面積 求め方 公式

 

ミニ正方形の面積は1 cm^2だよね?

この長方形には12個のミニ正方形がひそんでいるから、

面積は、

12[cm^2]

になるんだ。

つまり、

「タテ×ヨコ」になっているわけさ!

 

 

まとめ:長方形の面積の求め方の公式は超シンプル。

長方形の面積の公式は、

タテ×ヨコ

で求めることができる。

公式で面積を計算していこう!

そんじゃねー

Ken

3分でわかる!長方形の定義

長方形の定義ってなんだろう??

こんにちは!この記事をかいているKenだよ。ゴミ箱は2つほしいね。

 

長方形の定義ってなんだろう??

そう思うとき、

あるよね。

 

教科書によると長方形の定義は、

4つの角がすべて等しい四角形

らしい。

 

ぜーーんぶ角が等しいってことは、

1つの角はすべて90°ってことだね。

だって、四角形の内角の和は360°だからさ。

 

長方形 定義

 

このタイプの四角形を数学業界では、

長方形

ってよんでいるんだ。

 

2つの角がそれぞれ等しくてもダメ。

そいつは長方形なんかじゃない。

 

長方形 定義

 

すべての角が等しくても、五角形じゃダメ。

長方形とは呼べないね。

 

長方形 定義

こんなやつらじゃなくて、

4つの角がすべて等しい四角形

が「長方形の定義」っておぼえておこう。

 

 

長方形は平行四辺形の仲間なの??

1つだけおさえておきたいことがある。

それは、

長方形は平行四辺形の1種

ってことさ。

 

つまり、

長方形は平行四辺形である

といえちゃうんだ。そのはいえないけどね。

図でかくとこんな感じになる↓↓

 

長方形 定義

 

世界中のいろいろな平行四辺形のなかの1つに、

4つの角がすべて等しい四角形」という長方形がいるんだ。

 

この関係をたとえるなら、

炭酸飲料のなかのコーラみたいなもんさ。

長方形 定義

世の中には、

コーラとか、

サイダーとか、

スカッシュとか、CCレモンとか、

たくさんの炭酸飲料が、いる。

その中のひとつに、コーラがあるよね??

 

長方形 定義

 

この場合、

コーラは炭酸飲料である

っていえるけど、炭酸飲料はコーラであるとはいえないね。

 

炭酸飲料とコーラの関係でいうと、

「コーラ」が長方形っておぼえておこう。

 

 

なぜ長方形は平行四辺形の一種なのか???

でも、

なんで長方形は平行四辺形になるんだろう??

ちょっと不思議だね。

 

じつは平行四辺形になる条件の、

2組の向かいあう角はそれぞれ等しい

をつかっているんだ。

なぜなら、

4つのすべての角が等しいってことは、

向かいあう角同士も等しいからね。

 

長方形 定義

 

つまり、

ぜんぶの角度が90°になって、

2組の角がそれぞれ等しいっていえるんだ。

だから、長方形は平行四辺形ともよべちゃうんだね!

 

 

まとめ:長方形は平行四辺形の仲間だよ!

長方形の定義はどうだった??

4つの角がすべて等しい四角形

が長方形だったね。

この定義も大事だけどそこから、

長方形は平行四辺形である

ってことも導けるようにしておこう。

そんじゃねー

Ken

【簡単公式】3秒でわかる!四角形の内角の和の求め方

四角形の内角の和の求め方がわからんぜ??

こんにちは!この記事をかいているKenだよ。水道水、うまいね。

 

四角形の内角の和

ってたまに求めたいよね??

 

そんなときは、

多角形の内角の和の公式をつかえば一発。

n角形の内角の和は、

180× (n-2)

で計算できちゃうんだ。

 

多角形の内角の和 公式

 

四角形の内角の和は、

nに「4」を代入してやればいい。

すると、

180× ( n -2 )
= 180 × (4-2 )
= 360°

って計算できちゃう!

 

四角形 内角の和

 

つまり、四角形の内角の和は、

360°

になるんだ!!!

 

 

なぜ四角形の内角の和は360°になっちゃうの??

でもさ、

なぜ四角形の内角の和は360°になるんだろう??

便利すぎてこわいよね。。

せっかくだから、

内角の和が360°になる理由をさぐっていこう。

 

その理由はずばり、

四角形に「三角形が2つ」含まれているからなんだ。

 

対角線をすーーーっとひいてみよう。

 

四角形 内角の和

 

すると、

そこには、

三角形が2つ出現しているはず。

 

んで、

三角形の内角の和は180°だったよね??

 

四角形 内角の和

 

ってことは、

三角形が2つ隠れている四角形の内角の和は、

180°×2
= 360°

になるってわけ。

これで四角形の内角の和を計算できたね。

 

 

まとめ:四角形の内角の和は360°である!

多角形の内角の和を求めたいときは、

三角形が何個かくれているのか??

を調べてみよう!

そんじゃねー

Ken

【簡単公式】台形の面積の求め方がわかる3ステップ

台形の面積の求め方の公式がわからん!

こんにちは!この記事をかいているKenだよ。徒歩は5分だね。

 

台形の面積の求め方の公式っておぼえてる??

「上の辺」をa、「下の辺」をb、「高さ」をhとすると、

(a+b)×h ÷2

で計算できちゃうんだ。

 

台形の面積の求め方 公式

 

つまり、

(上の辺+下の辺)×(高さ)÷2

でいいんだ。

 

たとえば、

の台形ABCDがあったとしよう。

 

台形の面積の求め方 公式

 

このとき、台形の面積の公式をつかうと、

(上の辺+下の辺)×高さ÷2
= (4 + 8 ) × 6 ÷2
= 36 [cm^2]

になる。

 

くそ便利な公式だね!

 

 

台形の面積の求め方の公式がわかる3ステップ

でもさ、待ってよ。

台形の面積の公式は便利だけど、

なぜ公式がつかえちゃうんだろう??

「上の辺」と「下の辺」をたすだって??

まったく謎すぎる。。

 

そこで今日は、

台形の面積の求め方の公式をわかりやすく解説していくよ。

つぎの3ステップで計算できちゃうんだ。

  1. 対角線をひく
  2. 三角形の面積を2つ計算
  3. 面積を2つたす

 

例として、

の台形ABCDの面積を求めてみよう。

 

台形の面積の求め方 公式

 

 

 

Step1. 対角線をひく

台形に対角線をひこう。

1本でいいよ。

 

台形ABCDでいうと、

BとDをむすんでみようか。

 

台形の面積の求め方 公式

 

これで対角線BDのできあがりさ。

 

 

Step2. 三角形の面積を計算!

対角線をひくと、

台形が2つの三角形にわかれたね??

コイツらの面積を計算していくよ。

 

台形ABCDでは対角線BDをひいて、

の2つの三角形にわかれたね。。

 

台形の面積の求め方 公式

 

 

△ABDは、

の三角形。

 

台形の面積の求め方 公式

 

三角形の面積の公式をつかえば、

△ABDの面積は、

a × h ÷2
= 1/2 ah

になる。

 

おなじように、

△BCDの面積を計算しよう。

 

台形の面積の求め方 公式

 

公式をつかうと、

b × h ÷2
= 1/2bh

になるね。

 

 

Step3. 三角形の面積をたす!

最後に、2つの三角形の面積をたそう。

たしてやると、台形の面積になるはず!

 

台形ABCDの場合、

をたそう。

 

台形の面積の求め方 公式

 

すると、

△ABD + △BCD
= 1/2 ah + 1/2 bh
= 1/2h (a+b)

になるね。

これが台形ABCDの面積さ!

 

だから、

台形の面積 = 1/2h (a+b)
                    = (上の辺+下の辺)×高さ÷2

になるんだ。

これで、台形の面積の公式が導けたね !

 

 

まとめ:台形の面積の求め方は三角形にわけて考えろ!

台形の面積の公式は簡単。

(上の辺+下の辺)×高さ÷2

で計算できちゃうんだ。

おぼえることも大事だけど、

なぜ公式が使えるのか??

ってことも押さえておこう!

そんじゃねー

Ken

【簡単公式】三角形の面積の求め方がわかる3ステップ

三角形の面積の求め方の公式ってなに??

こんにちは!この記事をかいているKenだよ。洗顔大事だね。

 

三角形の面積の求め方の公式

それは、

底辺×高さ÷2

だ。

三角形の面積の求め方 公式

 

底辺をa、高さをbとすると、

1/2ab

であらわせるってわけ。

 

たとえば、

底辺6cm、高さ4cmの三角形ABCがいたとしよう。

 

三角形の面積の求め方 公式

 

こいつの面積は、

6×4÷2
= 12 [cm^2]

になるよ。

 

「底辺」と「高さ」がわかれば計算できちゃう。

この公式すげえ。

 

 

三角形の面積の求め方がわかる3ステップ

でもさ、

なんで公式が使えるんだろう??

関係のない「底辺」と「高さ」をかけて、

2でわったらなぜ面積になるのか?

 

三角形の面積の求め方 公式

 

ちょっと白黒つけたいよね。

 

そこで今日は、

三角形の面積の求め方を3ステップで解説していくよ。

よかったら参考にしてみて。

 

例として、

△ABCの面積を計算していこう。

三角形の面積の求め方 公式

 

 

Step1. 三角形を2つくっつける!

まずは、三角形を2つくっつけて平行四辺形をつくろう!

 

△ABCでもおなじさ。

三角形を2つくっつけるよ。

まず△ABCをコピーして、

△A’B’C’をつくる。

 

三角形の面積の求め方 公式

 

んで、△A’B’C’を△ABCと合体させるんだ。

 

三角形の面積の求め方 公式

 

三角形が組み合わさって、

平行四辺形ABC’Dができるはず!!

これが第1ステップさ。

 

 

Step2. 平行四辺形の面積を計算!

つぎは、平行四辺形の面積をもとめるよ。

平行四辺形の面積の求め方は、

1辺×高さ

だったよね??

 

平行四辺形 面積 求め方 公式

 

 

平行四辺形ABC’Dの1辺の長さは6 cm、

高さは4 cm。

 

三角形の面積の求め方 公式

 

だから面積は、

6×4
= 24[cm^2]

になるね。

 

 

Step3. 平行四辺形を三角形にもどす!

最後に、平行四辺形を三角形にもどそう。

平行四辺形の面積を2で割ってやればいいんだ。

だって、三角形が2つ含まれているからね。

 

三角形の面積の求め方 公式

 

平行四辺形ABC’Dの面積は「24cm^2」だったよね??

こいつを2で割ってやると、

24 ÷2
= 12[cm^2]

になる。

 

おめでとう!これで三角形の面積を計算できたね!

 

 

まとめ:三角形の面積の求め方は平行四辺形にたよる!

三角形の面積の求め方はどうだった??

  1. 三角形を2つ組み合わせる
  2. 平行四辺形の面積もとめる
  3. 半分にする

の3ステップでいいんだ。あとは、

底辺×高さ÷2

の公式でじゃんじゃん計算していこう!

そんじゃねー

Ken

【簡単公式】平行四辺形の角度の求め方がわかる3ステップ

平行四辺形の角度の求め方がわからん??

こんにちは!この記事をかいているKenだよ。リフティング、はじめたよ。

 

平行四辺形の角度を求める公式ってしってる??

角度をa、その隣の角度をbとすると、

b = 180 -a

になるんだ!

 

平行四辺形 角度 求め方

 

 

たとえば、角A = 120°の平行四辺形ABCDがあったとしよう。

 

平行四辺形 角度 求め方

 

このとき公式をつかうと、

角B = 180 -120
= 60°

になるんだ!

 

平行四辺形 角度 求め方

 

どう?? むちゃ便利な公式でしょ!??

 

 

平行四辺形の角度の求め方がわかる3ステップ

今日はせっかくだから、

なぜ公式で平行四辺形の角度が求められるのか???

ってことを振り返ってみよう。

 

さっきの「平行四辺形ABCD」をつかうよ。

 

平行四辺形 角度 求め方

 

公式なしで、角Bを計算していこう!

 

 

Step1. 向かいあう角をだす!

まずは向かいあった角を計算してやろう。

 

平行四辺形ABCDでいうと、角Aの角度がわかってるね??

ってことは、

向かいあっているのは「角C」だ。

 

平行四辺形 角度 求め方

 

「2組の向かいあう角の大きさはそれぞれ等しい」

という平行四辺形の性質をつかってあげよう。

すると、

角C = 角A = 120°

になるはずだ!

 

平行四辺形 角度 求め方

 

これが第一ステップ!

 

 

Step2.  残りの内角の和を計算!

平行四辺形の2つの角度がわかったね。

つぎは、

残り2つの角度をたしたらいくつになる??

ってことを計算するよ。

 

四角形の内角の和は、

360°

だったよね??

この「360°」から2つの角度をひけばいいんだ。

 

平行四辺形ABCDでいうと、

「角A」と 「角C」が120°ってことがわかった。

 

平行四辺形 角度 求め方

 

つまり、こいつらを足すと、

240°になるはずだ。

 

これを四角形の内角の和360°からひいてやると、

360 – 240
= 120°

になるね。

つまり、

残りの「角BとC」をたしたら120°になる

ってわけさ。

 

 

Step3. 残りの角の和を2でわる!

最後は「残りの角の和」を2でわろう。

なぜ2でわるのかというと、

残り2つの角度も等しいからだよ。

だって、平行四辺形の性質の、

「向かいあう角が等しい」

ってやつが使えるからね。

 

平行四辺形ABCDでいうと、BとDが等しいってことなんだ。

 

平行四辺形 角度 求め方

 

角Bと角Dをたしたら120°になる。

しかも、角B =角Dだから、

角B + 角D = 120

角B + 角B = 120

角B = 角D = 60°

になるね。

 

平行四辺形 角度 求め方

 

おめでとう!

平行四辺形の角度を求められたね!

 

 

まとめ:平行四辺形の角度の求め方は「性質」を使い倒せ!

平行四辺形の角度の求め方はシンプル。

180°から「隣の角の大きさ」をひけばいいんだ。

便利な公式だけど、

なぜ公式がつかえるのか??

ってことをおさえておこう。

そんじゃねー

Ken

【中学数学】平行四辺形の高さの2つの求め方

平行四辺形の高さの求め方を知りたい!

こんにちは!この記事をかいているKenだよ。みりんを大人買いしたね。

 

平行四辺形の高さの問題

ってたまーにでてくる。

たまにね。

 

平行四辺形の高さの求め方

 

「たまーに」なら勉強しなくていいや・・・

と思うかもしれない。

けど、それは大きな間違いだ。

たまーにでるからこそ、

ライバルたちと差がつけやすい問題でもあるんだ!

 

今日はそんなアツいテンションで、

平行四辺形の高さの求め方

を2つ紹介するよ。

 

 

平行四辺形の高さの2つの求め方

高さを求める問題には2パターンある。

  1. 「面積」と「1辺の長さ」がわかるヤツ
  2. 「内角」と「1辺の長さ」がわかるヤツ

 

 

 

求め方1. 「面積と1辺の長さがわかるとき」

平行四辺形の「面積」と「1辺の長さ」がわかっている問題だ。

ここでは、平行四辺形の面積の公式を応用してやろう。

面積をa、1辺の長さをbとすると、

高さ = a/b

で求めることができるんだ。

 

平行四辺形の高さの求め方

 

つまり、

(平行四辺形の高さ)=(面積)÷(1辺の長さ)

ってことだね。

 

たとえば、面積が36 [cm^2]、BCの長さが9 [cm]の平行四辺形があったとする。

 

平行四辺形の高さの求め方

 

このとき、平行四辺形の高さは、

(高さ)=(面積)÷(1辺の長さ)
= 4 [cm]

になるんだ。

 

平行四辺形の高さの求め方

 

このタイプの問題は公式をつかっていこう!

 

 

求め方2. 「内角と1辺がわかっているとき」

2つ目は、

「平行四辺形の内角」と「1辺の長さ」がわかってるパターンだ。

この問題では、

直角三角形の比をつかっていくよ。

 

たとえば、

平行四辺形ABCDのAB = 6 cm、角A = 120°だとしよう。

 

平行四辺形 対角線 長さ 求め方

 

まず、

角度がわかっている頂点から垂線をおろす。

向かい側の辺にね。

 

平行四辺形ABCDでいうと、

AからBCに垂線をおろすよ。

 

平行四辺形 対角線 長さ 求め方

交点をHとしよう。

 

平行四辺形の2組の向かいあう角はそれぞれ等しいから、

になるね。

 

平行四辺形 対角線 長さ 求め方

 

んで、

△ABHに注目してみると、

角60°をふくむ直角三角形になっていることがわかるよね??

ってことは、

AB : BH : AH = 2 : 1 : √3

になっているはず。

 

平行四辺形 対角線 長さ 求め方

 

よって、

AH = AB × √3 /2
=  6 × √3/2
=  3√3 [cm]

になるね。

 

こんな感じで、

垂線をひいて、直角三角形をつくっていこう!!

 

 

まとめ:平行四辺形の高さの求め方は2つおぼえとく!

平行四辺形の高さの求め方はシンプル。

  1. 「面積」と「1辺の長さ」がわかるとき
  2. 「内角」と「1辺の長さ」がわかるとき

の2パターンおぼえておけば、問題ない。

うん、

ガンガン問題をといていこう!

まずは高さがわからない平行四辺形の面積にチャレンジしよう。

 

 

そんじゃねー

Ken

【簡単公式】平行四辺形の面積の求め方がわかる3ステップ

平行四辺形の面積の求め方の公式ってなに??

こんにちは!この記事をかいているKenだよ。みかん、最高。

 

平行四辺形の面積の求め方には「公式」がある。

1辺の長さをa、高さをhとすると、面積は、

ah

で計算できちゃうんだ。

 

平行四辺形 面積 求め方 公式

 

つまり、

(平行四辺形の面積)= (平行四辺形の1辺)×(高さ)

ってわけ。

 

たとえば、1辺が10cm、高さが6cmの平行四辺形ABCDをイメージして。

 

平行四辺形 面積 求め方 公式

 

こいつの面積は、

(平行四辺形の1辺)×(高さ)
= 10×6
= 60 [cm^2]

になるんだ。

 

どう??

むちゃ便利な公式でしょー?!

 

 

平行四辺形の面積の求め方がわかる3ステップ

でもでも、でもだよ?

なんでこの公式が使えるんだろう???

どうして平行四辺形の面積が「1辺×高さ」になるのか??

ちょっと気になる。。

 

平行四辺形 面積 求め方 公式

 

そこで今日は、

平行四辺形の面積の求め方の公式

を3ステップで解説していくよ。

  1. 頂点から垂線を2本ひく
  2. 端の三角形を逆へ
  3. 長方形の面積を計算

よかったら参考にしてみて。

 

 

Step1. 頂点から垂線を2本ひく

平行四辺形の頂点から垂線を2本ひこう。

向かいの辺に垂線をひけばいいんだ。

 

平行四辺形ABCDでは、

の2本をひいてみたよ。

 

平行四辺形 面積 求め方 公式

 

それぞれの交点をE、Fとしよう。

 

 

Step2. はしの三角形を逆側に!

はしっこの三角形を移動させよう。

三角形をナイフできりとって、

移動させるイメージね。

 

平行四辺形ABCDでいうと、

△CDFを、

逆の辺AB側に移動させるよ。

平行四辺形 面積 求め方 公式

 

△CDFをナイフできりとって、

 

平行四辺形 面積 求め方 公式

 

こいつを逆側の辺AB側に移動させてやる。

 

平行四辺形 面積 求め方 公式

 

すると、

△ABEと△DCFは合同だから、

2つを組み合わせると、ぴたりとはまる。

 

んで、

新しいミニ長方形ができちゃうんだ。

 

平行四辺形 面積 求め方 公式

 

 

Step3.  大きな長方形の面積を計算!

最後は、おーきな長方形の面積を計算すればいいんだ。

 

平行四辺形 面積 求め方 公式

 

ミニ三角形を移動させてできた点をGとすると、

長方形GBCFの面積でいいんだ。

 

長方形の面積の求め方は、

タテ×ヨコ

だったよね??

 

平行四辺形 面積 求め方 公式

 

ってことは、この長方形GBCFの面積は、

GB×BC

になるわけ。

 

BCは平行四辺形ABCDの「1辺の長さ」、

GBは「高さ」だね。

 

平行四辺形 面積 求め方 公式

 

ってことは、

長方形GBCF
= 平行四辺形ABCD
= (1辺の長さ)×(高さ)

になるんだ。

 

おめでとう!

平行四辺形の面積の公式をゲットしたね!

 

 

まとめ:平行四辺形の面積の求め方は三角形を切り取ろう!

平行四辺形の面積の求め方??

そんなの簡単さ。

三角形をナイフできりとろう。

あとは、そいつを逆サイドに移動させるだけ。

1辺×高さ

の公式をじゃんじゃん使っていこう!

そんじゃねー

Ken

【中2数学】平行四辺形の性質がわかる3つの証明

平行四辺形の性質の証明がよくわからん??

こんにちは!この記事をかいているKenだよ。パイナップルに埋もれたい。

 

平行四辺形の性質には次の3つがあったよね。

 

こいつらはむちゃ便利だ。

だって、

「平行四辺形」だったら、

向かいあう辺・角が等しいっていえちゃうんだからね。

 

平行四辺形の性質 証明

 

しかも、対角線が中点でまじわるんだって。

 

平行四辺形の性質

 

こいつらを使えば、

平行四辺形の問題なんて瞬殺さ!

もー、最高だね・・・・・・

 

 

 

だがしかし。

なんで「平行四辺形の性質」って使えるんだろう??

便利すぎて怪しい。

詐欺かって思うよね??

 

そこで今日は、

平行四辺形の性質の証明を解説して、

疑問を解消していこう!

 

 

平行四辺形の性質がわかる3つの証明

平行四辺形の性質を証明するには、

三角形の合同をつかうよ。

しかも、3組の合同を証明しなくちゃいけないんだ。

 

平行四辺形ABCDがあって、

対角線の交点をMとしよう。

 

平行四辺形の証明 性質

 

 

このとき、△ABCと△ADCと、

 

平行四辺形の性質 証明

 

△ABDと△CDB、

 

平行四辺形の性質 証明

 

△ABMとCDMの合同を、

 

 

平行四辺形の性質 証明

 

を証明していくんだ。

こいつらの合同がいえれば、

平行四辺形の性質を証明できるってわけ。

順番にみていくよー

 

 

証明1. 「2組の向かい合う辺の長さは等しい」

まずは、平行四辺形の性質の、

2組の向かいあう辺の長さは等しい

を証明していこう。

 

の三角形の合同を証明していくよ!

 

平行四辺形の性質 証明

 

 

△ABCと△CDAにおいて、

四角形ABCDは平行四辺形だから、

AD // BC・・・・(1)

だね。

平行線の性質より錯角が等しいから、

角ACB = 角CAD・・・・(2)

になる。

 

平行四辺形の性質 証明

 

同じように、

AB // CDより、

錯角が等しいから、

角BAC =  角DCA・・・・(3)

 

平行四辺形の性質 証明

 

んで、

辺ACは共通だから、

AC = CA ・・・・・(4)

になるね。

 

(2)、(3)、(4)より、

1組の辺とその両端の角がそれぞれ等しいから、

△ABC ≡ △CDA

になるね。

 

また、

対応する辺の長さが等しいから、

になる。

 

これで、平行四辺形の性質の、

「2組の辺の長さがそれぞれ等しい」

ってやつが証明できた。

 

平行四辺形の性質 証明

 

 

証明2. 「2組の向かい合う角の大きさがそれぞれ等しい」

つぎは2つめの、

2組の向かいあう角の大きさがそれぞれ等しい

の証明だ。

 

さっき証明した、

△ABC ≡ △CDA

をつかおう。

対応する角がそれぞれ等しいから、

角ABC = 角CDA・・・・(5)

ってことがいえる。

 

平行四辺形の性質 証明

 

△ABC と△CDAおなじように、

△ADCと△CBAの合同

も証明できる。※ここでは省略するね。

 

平行四辺形の性質 証明

 

こいつらでも対応する角が等しいから、

角BAD = 角BCD・・・・(6)

ってことがいえるんだ。

 

平行四辺形の性質 証明

 

(5)・(6)より、

がいえる。

よって、

2組の向かいあう角の大きさがそれぞれ等しい

っていう性質を証明できるんだ。

 

 

証明3. 「対角線は中点でまじわる」の証明

最後は、

対角線はそれぞれの中点で交わる

という性質を証明していくよ。

 

ここでは、

△ABMと△CMDの合同

を証明していくんだ。

 

平行四辺形の性質 証明

 

△ABMと△CMDにおいて、

さっき証明した、

「2組のむかい辺はそれぞれ等しい」

っていう性質をつかうと、

AB = CD ・・・・(1)

ってことがわかる。

 

AB//CDより、錯角が等しいから、

角BAM = 角DCM・・・・(2)

角ABM = 角CDM・・・・(3)

 

平行四辺形の性質 証明

 

(1)、(2)、(3)より、

1組の辺とその両端の角がそれぞれ等しいから、

△ABM  ≡ △CDM

になる。

よって、

対応する辺はそれぞれ等しいから、

になるよー!

 

平行四辺形の性質 証明

 

つまり、

平行四辺形の対角線は中点で交わるんだ。

 

おめでとう!

平行四辺形の性質を3つ証明できたね。

 

 

まとめ:平行四辺形の性質は三角形の合同の証明から!

平行四辺形の性質の証明はシンプル。

ぜーんぶ、

三角形の合同

からきているんだ。

合同な図形をしっかり見極めて、

ゆっくり証明していこう。

そんじゃねー

Ken

【中2数学】平行四辺形の3つの性質

平行四辺形の性質ってなに??

こんにちは!この記事をかいているKenだよ。故郷が恋しいね。

 

平行四辺形の定義はわかった。

だけど、

平行四辺形にはどんな性質があるんだろう??

って思うよね。

 

平行四辺形の性質

 

今日はそんなときに備えて、

平行四辺形の性質を3つ紹介していくよ。

よかったら参考にしてみて。

 

 

おさえておきたい!平行四辺形の3つの性質

平行四辺形の性質には3つあるんだ。

うえからみていくよー!

 

 

性質1. 「2組の向かい合う辺はそれぞれ等しい」

1つ目の性質は、

2組の向かいあう辺はそれぞれ等しい

というものさ。

 

平行四辺形ABCDがあったしよう。

 

平行四辺形 定義 性質

 

向かいあう辺どうしが等しいから、

になるんだ。

 

つまり、

平行四辺形の1辺がわかると、向かいあった辺の長さもわかる

ってことなんだ。

すごくない??

 

たとえば、

だったとしよう。

 

平行四辺形 定義 性質

 

残りの辺の長さを求めてみよう。

2組の向かいあう辺の長さは等しいので、

になるんだ。

 

平行四辺形 定義 性質

 

どう?

クソ便利な性質でしょ??。

 

 

性質2. 「2組の向かいあう角はそれぞれ等しい」

つぎは角度についての性質。

2組の向かいあう角はそれぞれ等しい

というものがあるんだ。

 

平行四辺形ABCDがあったとしよう。

 

平行四辺形 性質

 

向かいあう角が等しいから、

になるんだ。

 

たとえば、角A = 120°だとしたら、

 

平行四辺形 性質

 

 

角C = 120°になるってこと。

 

平行四辺形 性質

 

しかも、

角B = 角Dってことを使えば、

残りの角の大きさもわかっちゃう。

 

角Bと角Dの大きさは、

(四角形の内角の和 360°)から

(角AとCをひいたもの)を(2でわったやつ)になる。

 

角B = 角C = (360-120-120)/2

= 60°

になるってことだ。

 

平行四辺形の性質

 

1つの角度がわかれば、ぜーんぶの角度がわかっちゃうんだよ。

すごいね!

 

 

性質3.「対角線はそれぞれの中点で交わる」

いよいよ最後の性質だ。

平行四辺形の対角線は中点で交わる

ってやつだよ。

 

平行四辺形ABCDがあったとしたら、

対角線ACとBDは中点でまじわっているんだ。

 

平行四辺形の性質

 

対角線の交点をMとすれば、

になってるってことさ。

 

たとえば、対角線ACの長さを12cmとしよう。

 

平行四辺形の性質

 

気分で、

もう1つ対角線BDをひいたとしよう。

 

交点をMとすると、

AM  =  CM =  6 cm

になっちゃうんだ。

 

平行四辺形の性質

 

つまり、

対角線ACの中点で、

ACとBDがまじわっているわけだね。

 

これで平行四辺形の3つの性質はおわり!

ゆっくりでいいからおぼえていこう。

 

 

まとめ:平行四辺形の3つの性質は辺・角・対角線について!

平行四辺形の3つの性質はどうだった??

こいつらは意外と問題にでてくる。

テスト前にしっかりとおさえておこう!

そんじゃねー

Ken

平行四辺形の対角線の長さの求め方がわかる4ステップ

平行四辺形の対角線の長さの求め方??

こんにちは!この記事をかいているKenだよ。毛布、ほしいね。

 

平行四辺形の対角線の長さの問題

ってむずい。

でも、

求め方を知っておけば大丈夫。

ドヤ顔で答えられるよ。

たとえばつぎの例題をみてみて。

 

例題

平行四辺形ABCDにおいて、AB = CD = 6cm、AD = BC = 10cmとする。
角A = 120°のとき、対角線ACの長さを求めよ。

 

平行四辺形 対角線 長さ 求め方

 

今日はこの、

平行四辺形の対角線の長さを求める問題を3ステップで解説していくよ。

よかったら参考にしてみてね。

 

 

平行四辺形の対角線の長さの求め方がわかる4ステップ

例題の、

例題

平行四辺形ABCDにおいて、AB = CD = 6cm、AD = BC = 10cmとする。
角A = 120°のとき、対角線ACの長さを求めよ。

平行四辺形 対角線 長さ 求め方

 

 

をときながら解説していくよ。

つぎの4ステップでとけちゃうんだ。

  1. 垂線をおろす
  2. 角度をもとめる
  3. 高さを求める
  4. 三平方の定理をつかう

 

 

Step1. 「頂点」から垂線をおろす

平行四辺形の頂点から垂線をおろそう。

角度がわかっている頂点から垂線をひいてみて。

 

例題でいうと、角Aから垂線をひくよ。

だって、

角A = 120°

って角度がわかってるからね。

 

AからBCに垂線をおろすと、

だいたいこんな感じになる↓↓

 

平行四辺形 対角線 長さ 求め方

 

垂線とBCの交点をHとしよう。

 

 

Step2. 平行四辺形の角度を求める

平行四辺形の角度を求めよう。

平行四辺形の性質の、

2組の向かいあう角は、それぞれ等しい

を使うよ。

 

2組の向かいあう角は、それぞれ等しい

から、

角A = 角C = 120°

ってわかる。

 

平行四辺形 対角線 長さ 求め方

 

ってことは、

残りの角Bと角Dは、

角B = 角D = (360°- 240°)÷2 = 60°

になるはずだ。

 

平行四辺形 対角線 長さ 求め方

 

 

Step3. 平行四辺形の高さを求める

平行四辺形の高さを求めてみよう。

例題でいうと、

線分AHの長さだね。

 

平行四辺形 対角線 長さ 求め方

 

高さAHの長さを求めるために、

直角三角形ABHに注目してみよう。

 

平行四辺形 対角線 長さ 求め方

この直角三角形は、

の角度をもっているね。

 

ってことは、この直角三角形の比は、

1: 2: √3

になるはずだ。

 

平行四辺形 対角線 長さ 求め方

 

よって、

になるね。

 

 

Step4. 三平方の定理をつかう!

いよいよ最後のステップ。

三平方の定理で「対角線の長さ」をもとめよう!

 

例題では、

直角三角形ACHに注目してくれ。

 

平行四辺形 対角線 長さ 求め方

 

ここでは、

AHとCHで三平方の定理をつかって、

対角線AC の長さを求めていくよ。

 

Step3より、

だね。

 

平行四辺形 対角線の長さ 求め方

 

よって、

AC = √(AH^2+CH^2)
= √[(3√3)^2+ 7^2]
= 2√19

になる。

 

おめでとう!

平行四辺形の対角線の長さを計算できたね!

 

 

まとめ:平行四辺形の対角線の長さの求め方は直角三角形がカギ

平行四辺形の対角線の求め方はムズい。

だけれども、

直角三角形をうまくつくれば大丈夫。

あとは三平方の定理を使うだけさ。

がんばって計算してみてね。

そんじゃねー

Ken