【一次関数】x・yの変域の求め方がわかる3つのステップ

一次関数の変域の求め方を知りたい!

こんにちは!この記事をかいているKenだよ。換気は大事だね。

 

一次関数の変域の問題ってよくでるよね。

たとえば、つぎのような問題さ。

 

例題

1次関数y = -3x+7について、xの変域が -1 ≦ x ≦ 9のとき、yの変域を求めなさい。

 

一次関数の変域とかあきらかにむずそうだけど、

基本をおさえればチョー簡単なんだ。

今日はこのタイプの問題を攻略するためにも、

一次関数の変域の求め方がわかる3ステップ

を紹介するよ。

よかったら参考にしてみて。

 

 

一次関数の変域の求め方がわかる3つのステップ

3ステップで変域を求められるよ。

  1. 変域の端と端を代入する
  2. 小さい方を左、大きい方を右にかく
  3. 不等号は同じやつを使う

 

例題をいっしょにといてみよう!

 

 

 

Step1. 変域の端と端を代入する

まず、変域の端と端を代入してやろう。

 

たとえば、xの変域が○ ≦ x ≦ □だとしたら、

  • x = ○
  • x = □

を一次関数に代入すればいいんだ。

 

一次関数 変域 求め方

 

例題でわかっているのはxの変域の、

-1 ≦ x ≦ 9

だね。

この変域の端っこの、

  • x = -1
  • x = 9

を一次関数 y = -3x + 7 に代入すればいいんだ。

 

一次関数 変域 求め方

 

x = -1 を代入すると、

y = -3x + 7
= -3 × (-1) + 7
= 10

になる。

 

一次関数 変域 求め方

 

一方、x = 9を代入してやると、

y = -3x + 7
=-3 × 9 + 7
= – 20

になるね。

 

一次関数 変域 求め方

 

これが第1ステップ!

 

 

 

Step2. 小さい値を左、大きい値を右にかく

さっき計算した2つの値のどちらが大きいのか??

を比べてみよう。

 

そして、

大きい値を右に、小さい値を左にかくんだ。

 

一次関数 変域 求め方

 

例題では、

  • y = 10
  • y = -20

の2つをゲットできたね??

こいつらを比べてみると、

明らかに10のほうがでかい。

-20のほうが小さいね。

 

だから、10を右に、-20を左にかいてみて。

 

一次関数 変域 求め方

 

これが第2ステップ!

 

 

Step3. 不等号でむすぶ!

最後は不等号で結んでみよう。

使う不等号は、

問題でわかってる変域と同じものを使うよ。

 

例題でいうと、xの変域は「≦」を使ってるよね??

だからyの変域も「≦」を採用するのさ。

 

例題をみてみよう。

「大きい値」と「小さい値」の間に「y」をかく。

 

一次関数 変域 求め方

 

そして、

「小さい値」・「大きい値」と「y」を「≦」で結んでやるのさ。

-20≦y≦10

 

一次関数 変域 求め方

 

これでyの変域が求まったよ。

おめでとう。

 

 

なぜ一次関数の変域が求められるんだろう??

でもさ、なんで変域が求められるんだろう??

話がうますぎるよね。

 

じつは、ここだけの話なんだけど、

一次関数がまっすぐだからなんだ。

一次関数 変域 求め方

xの変域の端っこと端っこのy座標が、

yの変域の端っこと端っこになっているよ。

一次関数 変域 求め方

これは傾きがマイナスでも同じだね。

一次関数 変域 求め方

 

もし、一次関数が波だっていたり、

一次関数 変域 求め方

 

ギザギザしていたら変域はこのやり方だと無理。

一次関数 変域 求め方

なぜなら、変域の端っこ以外に、

最大値とか最小値がいるかもしれないからね。

 

一次関数がまっすぐだからこそ、変域の端っこが最大値・最小値になる

ってことを覚えておこう!

 

 

まとめ:一次関数の変域の求めるためには端をつかえ!

一次関数の変域の求め方は簡単。

  1. 変域の端っこを2つ代入
  2. 小さい順に並べ替える
  3. 不等号で結ぶ

の3ステップでいいんだ。

問題をといて変域に慣れていこう!

そんじゃねー

Ken