弦の長さを三平方の定理で求めたい!
どーもー!ぺーたーだよ。
今日は、
「円」と「三平方の定理」を合体させた問題の説明をするよ。
その一つの例として、
円の弦の長さを求める問題
が出てくることがあるんだ。
たとえば、次のような問題だね。
練習問題
半径6cmの円Oで、中心Oからの距離が4cmである弦ABの長さを求めなさい。
弦っていうのは、弧の両端を結んでできる直線だったね。
ここでは直線ABが弦だよ。
この「弦の長さ」を求めてねっていう問題。
この問題を今日は一緒に解いてみよう。
自分のペースでついてきてね!
三平方の定理を使え!弦の長さの求め方がわかる3ステップ
弦の長さを求める問題は次の3ステップで解けちゃうよ。
- 直角三角形を作る
- 三平方の定理を使う
- 弦の長さを出す
練習問題
半径6cmの円Oで、中心Oからの距離が4cmである弦ABの長さを求めなさい。
Step1. 直角三角形を作る!
まずは、
「弦の端っこ」と「円の中心」を結んで、
直角三角形を作っちゃおう。
練習問題では、
AからOへ、BからOへ線を書き足したよ。
弦ABとOの交点をHとすると、
△AOHは直角三角形になるよね?
これで計算できるようになるんだ。
STEP2. 三平方の定理を使う
次は、直角三角形で「三平方の定理」を使ってみよう。
練習問題でいうと、
△AOHは直角三角形だから三平方の定理が使えそうだね。
三平方の定理を使って残りの「AHの長さ」を出してみようか。
- OH=4cm(高さ)
- OA =6㎝(斜辺)
- AH=xcm(底辺)
こいつに三平方の定理に当てはめると、
4²+x²=6²だから
16+x²=36
x²=3²-16
x²=20
x>0より
x=2√5
になるね。
だから、AH=2√5㎝になるってわけ。
Step3. 弦の長さを求める
あとは弦の長さを求めるだけだね。
弦の性質を使ってやればいいのさ。
弦の性質についておさらいしておこう。
円の中心から弦に垂線をひくと、弦との交点は弦の中点になる
って性質だったね。
「えっ、そんなの聞いたことないんだけど」
って人もいるかもしれないけど、意地でも思い出してほしいね。
∠AHO=90°ってことは、OHは垂線ってことだね。
だから、弦の性質を使うと、
Hは弦ABの中点なんだ!
ABの長さはAHの2倍ってことだから、
AB = 2AH
=2√5×2=4√5
つまり、
弦ABの長さは 4√5 [cm] になるんだね。
おめでとう!
まとめ:弦の長さには「弦の性質」と「三平方の定理」で一発!
弦の長さの問題はどうだったかな??
- 直角三角形を作る
- 三平方の定理を使う
- 弦の長さを出す
の3ステップでじゃんじゃん弦の長さを計算していこう。
じゃあ今日はこれでおしまい!
またね!
ぺーたー