【文字式の利用】連続する3つの整数の和が3の倍数になる証明

連続する3つの整数の和が3の倍数になるってほんと!?

こんにちは!この記事をかいているKenだよ。おしぼりは無敵だね。

 

文字式の利用で、

連続する3つの整数の和の問題

ってでてくるよね。

 

たとえば、つぎの問題 ↓↓

 

例題

連続する3つの整数の和が3の倍数になる訳を説明しなさい。ただし、整数は正の数とする。

 

日常生活では3つの整数の和なんて考えないよね??

だって、必要ないもん。

 

でもね、中2数学の問題ではよくでてくる証明なんだ。

今日はこの問題を攻略してみよう!

 

連続する3つの整数の和の証明がわかる4ステップ

4ステップで証明できちゃうよ。

  1. nを整数とする
  2. 連続する3つの整数をnであらわす
  3. たす
  4. さけぶ

 

さっきの例題をといていこう!

 

例題

連続する3つの整数の和が3の倍数になる訳を説明しなさい。ただし、整数は正の数とする

 

 

Step1. 整数をnとする

ある正の整数を「n」としてみて。

nは「正の整数」だから、

1にもなるし、2にもなるし、10にだってなるんだ。

 

えっ。なぜ「n」を使わなきゃいけないんだって?!

えっ?

zを使いたい??

 

じつは、nは英語の「number (数字)」からきているんだ。

 

連続する3つの整数の和

 

ぶっちゃけzとかqでもいいんだけどさ。

nをつかうとカッコいいじゃん?。

とりえあず正の整数を「n」とおこう!

 

 

Step2. 連続する整数をnであらわす

連続する3つの整数をnであらわそう!

連続する3つの整数ってたとえば、

1, 2, 3

みたいに、1ずつ違う整数のことだ。

 

連続する3つの整数の和

 

たとえば、

1, 4, 5

とかは連続してないね。

だって、1ずつ離れてないし。

 

連続する3つの整数の和

 

nであらわすときは、

連続する3つの整数のうち、正の整数nを、

真ん中の整数

とおくといいよ。

連続する3つの整数の和

そうすると、

  • 一番小さい整数
  • 一番大きい整数

をnで簡単にあらわせるからね。

 

連続する3つの整数は1ずつ離れてる。

よって、

  • n-1
  • n
  • n+1

になるはずだ!

 

連続する3つの整数の和

 

 

 

Step3. たす

つぎは、連続する3つの整数をたそう。

nであらわした、

  • n-1
  • n
  • n+1

をたせばいいんだ。

 

ぜんぶたしてみると、

(n-1)+n+(n+1)
= 3n

になるね!

連続する3つの整数の和

 

 

Step4. 和が3の倍数になると証明する

最後に、和が「3の倍数」になる証拠をみつけよう。

証拠がみつかれば、

連続する3つの整数の和が「3の倍数」である

って証明できるからね。

 

例題でいうと、

連続する3つの整数の和は、

3n

になったね。

 

で、nは正の整数だったよね??

ってことは、

3n

は3の倍数になるんだ!

 

連続する3つの整数の和

 

だって、「n」には1とか2とか6とかがはいるわけだからね。

そいつらが3倍されたら、

  • 1→3
  • 2→6
  • 3→9

3の倍数になるじゃん??

 

連続する3つの整数の和

 

だから、連続する3つの整数の和は3の倍数っていえるんだ!

 

 

まとめ:連続する3つの整数の和は3の倍!

この問題は、

  1. 正の整数をnであらわす
  2. 連続する整数たちをnであらわす
  3. たす
  4. さけぶ

の4ステップで証明できちゃう。どんどんチャレンジして行こう

 

そんじゃねー

Ken